Highly accurate doubling algorithms for M-matrix algebraic Riccati equations

نویسندگان

  • Jungong Xue
  • Ren-Cang Li
چکیده

The doubling algorithms are very efficient iterative methods for computing the unique minimal nonnegative solution to anM -matrix algebraic Riccati equation (MARE). They are globally and quadratically convergent, except for MARE in the critical case where convergence is linear with the linear rate 1/2. However, the initialization phase and the doubling iteration kernel of any doubling algorithm involve inverting nonsingular M -matrices. In particular, for MARE in the critical case, the M -matrices in the doubling iteration kernel, although nonsingular, move towards singular M -matrices at convergence. These inversions are causes of concerns on entrywise relative accuracy of the eventually computed minimal nonnegative solution. Fortunately, a nonsingular M -matrix can be inverted by the GTH-like algorithm to almost full entrywise relative accuracy, provided a triplet representation of the matrix is known. Recently, Nguyen and Poloni (Numer. Math., 130(4):763–792, 2015) discovered a way to construct triplet representations in a cancellation-free manner for all involved M -matrices in the doubling iteration kernel, for a special class of MAREs arising from Markov-modulated fluid queues. In this paper, we extend Nguyen’s and Poloni’s work to all MAREs by also devising a way to construct the triplet representations cancellation-free. Our construction, however, is not a straightforward extension of theirs. It is made possible by an introduction of novel recursively computable auxiliary nonnegative vectors. As the second contribution, we propose an entrywise relative residual for an approximate solution. The residual has an appealing feature of being able to reveal the entrywise relative accuracies of all entries, large and small, of the approximation. This is in marked contrast to the usual legacy normalized residual which reflects relative accuracies of large entries well but not so much those of very tiny entries. Numerical examples are presented to demonstrate and confirm our claims. 2000 Mathematics Subject Classification. 15A24, 65F30, 65H10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance enhancement of doubling algorithms for a class of complex nonsymmetric algebraic Riccati equations

A new class of complex nonsymmetric algebraic Riccati equations has been studied by Liu & Xue (2012, SIAM J. Matrix Anal. Appl., 33, 569–596), which is related to the M-matrix algebraic Riccati equations. Doubling algorithms, with properly chosen parameters, are used there for equations in this new class. It is pointed out that the number of iterations for the doubling algorithms may be relativ...

متن کامل

Alternating-directional Doubling Algorithm for M-Matrix Algebraic Riccati Equations

A new doubling algorithm—the alternating-directional doubling algorithm (ADDA)— is developed for computing the unique minimal nonnegative solution of an M -matrix algebraic Riccati equation (MARE). It is argued by both theoretical analysis and numerical experiments that ADDA is always faster than two existing doubling algorithms: SDA of Guo, Lin, and Xu (Numer. Math., 103 (2006), pp. 393–412) a...

متن کامل

Structured Doubling Algorithms for Weak Hermitian Solutions of Algebraic Riccati Equations

In this paper, we propose structured doubling algorithms for the computation of weak Hermitian solutions of continuous/discrete-time algebraic Riccati equations. Under the assumptions that partial multiplicities of purely imaginary and unimodular eigenvalues (if any) of the associated Hamiltonian and symplectic pencil, respectively, are all even, we prove that the developed structured doubling ...

متن کامل

A Convergence Result for Matrix Riccati Differential Equations Associated with M-matrices

The initial value problem for a matrix Riccati differential equation associated with an M -matrix is known to have a global solution X(t) on [0,∞) when X(0) takes values from a suitable set of nonnegative matrices. It is also known, except for the critical case, that as t goes to infinity X(t) converges to the minimal nonnegative solution of the corresponding algebraic Riccati equation. In this...

متن کامل

On the Doubling Algorithm for a (Shifted) Nonsymmetric Algebraic Riccati Equation

Nonsymmetric algebraic Riccati equations for which the four coefficient matrices form an irreducible M -matrix M are considered. The emphasis is on the case where M is an irreducible singular M -matrix, which arises in the study of Markov models. The doubling algorithm is considered for finding the minimal nonnegative solution, the one of practical interest. The algorithm has been recently stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017